

Effects of surface waves on SSH ... results from theories and models

and roughness for interpretation of SSH signals

B. Chapron, F. Ardhuin, P. Dubois, N. Rascle With precious help from S. Gille, D. Menemenlis, J. Gula & C. Rocha

a story of known knowns, known unknowns and ...?

θ

1. Geometric sea state bias

Several effects lead to an apparent mean sea level different from the truth :

- 1. More power is returned from horizontal facets... these are lower
- 2. SAR-induced displacements (see Rodriguez et al. recent efforts)

Here we focus on first effect. Same as nadir altimeters

A rule of thumb is that $SSB \sim b$ Hs ... with $b \sim 0.03$.

Why Hs? Because it is commonly measured...

Is b constant? No, b is only constant if the wave slopes are constant

- (scaling of wave surface geometry)...
- → we need to measure Hs for SSH estimates.

1. Direct wave elevation at ~ 15 km Infragravity waves

SWOT : new issue for altimetry

1 cm² /(cyc / km) exceeded 10% of time off mid-latitude west coasts.

Ardhuin et al. 2014 Rawat & al. GRL 2014

1. Geometric sea state bias

First: how fast does Hs varie spatially?

Second: is b having strong spatial gradients too?

Back to Minster et al. (1992):

(see also Fu & Glazman ... up to Tran et al. 2010)

First: how fast does Hs varie spatially?

New result : small scale gradients of Hs are due to currents !

(Ardhuin et al., in prep., using same wave model as Ardhuin et al. JPO 2012)

13-16 June 2016

First: how fast does Hs varie spatially?

New result : small scale gradients of Hs are due to currents !

Hs spectrum follow current: k^{-2.5}

→ note that short waves

(T < 6 s) roll off slower

If the Hs error is 10 % what is the spectrum of that error?

If one value for full swath

- → error spectrum = Hs spectrum
- \rightarrow error @ 100 km ~ 10 cm² / cy/ km
- \rightarrow error @ 10 km ~ 0.01 cm² / cy/ km
- ... OK, Hs > 2 m (Drake passage)

But what about true gradients of current? Not a *model* ...

→ how many estimates of Hs needed ?

First: how fast does Hs varie spatially?
What about Hs ~ 2 m? moving to east coast (ROMS model by J. Gula)

13-16 June 2016

First: how fast does Hs varie spatially? What about Hs ~ 2 m?

 \rightarrow error @ 10 km ~ 0.002 cm² / cy/ km

Now, what about **b**?

theory for b : Longuet-Higgins (1963)

- \rightarrow 3rd order moments of the wave spectrum
- Measurable proxies :
- the surface Stokes drift
- (related to Doppler Centroid)

- the mean square slope (related to radar backscatter)

Recommendations for the OBP? ... and others ...

1) Small-scale variations in Hs are dominated by currents

CLS

- Not taken into account in SWOT error budget.
- Seems important around 100 km : resolved by 3 points cross-swath ?
- How many points of Hs needed cross-swath ?
- 2) SSB is not just Hs
 - Measurable proxies are probably :
 - cross-sections
 - Doppler centroïds

More work to do: use real current gradients→ estimated with glitter use real waves → drifting buoys

A case for synergistic science

- Upper ocean mixing (Langmuir ...)
- (Stokes drift is proportional to Doppler centroid anomaly near-nadir)
- Wave-current interactions
- Ice-wave-current interactions …

EXTRA SLIDES: Hs vs mss_long

Known for C band.... True also for Ka band

EM Bias for SWOT with the hands

The sea surface being a collection of facets, each one having its own inclination and roughness.

1 weighted facet in the complex plan

All weighted facets contributing to 1 SWOT pixel

Case 0: Uniform $\sigma_0(r,t) = \overline{\sigma_0}$, $\langle h(r,t) \rangle = 0$

EM Bias for SWOT with the hands: linear/tilt

EM Bias for SWOT with the hands: non linear/tilt

EM Bias for SWOT with the hands: linear/roughness mod.

